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Outline

�LCPS model

�LCPS (asymptotic) solution -- algorithm

�Application Case 1: Single-Hop Random Access Networks

�Application Case 2: OFDMA Cellular Wireless Networks

�Application Case 3: Large-Scale MANETs

� Resource sharing: Channel selection, client association, scheduling, power 
allocation

� Routing: Backbone routing, geographic routing and other schemes

�Proposed plan

� Asymptotic analysis for *given* routing

� Simulation to validate and begin integration with networking protocol
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Distributed Optimization in Locally-Coupled Systems: 
Methodology
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Distributed Optimization in Locally-Coupled Systems: 
Optimal Solution
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* S. Borst, M. Markakis, and I. Saniee, “Non-concave utility maximization in locally coupled systems, with applications to 
wireless and wireline networks,” to appear IEEE/ACM Transactions on Networking, 2013.
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Simple Example: Single Channel with 2 Power Levels -- 1 
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Simple Example: Single Channel with 2 Power Levels -- 2 
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What Does LCPS Tell Us That We Didn’t Know Before?
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Application Case 1: Single-Hop Random Access Multiple AP

� A system consisting of several access points (APs) and  clients 

operating in a number of channels

� Goal: Efficient resource allocation to clients in fair manner with 

minimal coordination among APs

� Optimization problem: 

max U = ∑ wi log ri

� ri = throughput of client i

AP

AP

Alcatel-Lucent – Internal
Proprietary – Use pursuant to Company instruction.8

i

� well-known to achieve proportional fairness

� Resource allocation involves:

� Choosing the channel to operate in for each AP (Channel 

Selection)

� Choosing the AP to associate with for each client  (Client 

Association)

� Choosing channel access rate for each AP (Access) 

� Scheduling clients for each AP (Scheduling)

AP

AP
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� Optimal proportional fairness achieved by jointly solving 4 problems         

� Scheduling and Access are updated on fast time scale

� Client Association (CA) & Channel Selection (CS) on slow time scale

� Scheduling & Access can be solved analytically

� For CA and CS, need to consider how the solutions affect    

Scheduling and Access – non convex

� Solved through Gibbs sampler

Application Case 1: Solution Overview

AP

AP

Alcatel-Lucent – Internal
Proprietary – Use pursuant to Company instruction.

� Maximize system utility: U = ∑ wi log ri

� APs/clients make decisions locally and randomly,                

favoring those resulting in better utility

� CA: p(i,n) ~

� Converges to global optimum allocation a.s.

� Greedy policy for faster convergence

� Traditional approaches based on separation – sub-optimal

9

AP

AP

Data Rate Interference Channel Congestion
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Application Case 1: Key Performance Benchmarks

LCPS -- randomized

Pure strategy

Current state of art

Current greedy

1

Alcatel-Lucent – Internal
Proprietary – Use pursuant to Company instruction.10

16 APs, 50 clients, 7 channels

I. Hou and P. Gupta, “Distributed resource allocation for proportional fairness in multi-band wireless systems,“ 
Procs. 2011 IEEE Intl. Symposium on Information Theory, St. Petersburg, July 31-Aug 5, 2011.
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Application Case 2: OFDMA Cellular Wireless Networks

� System consisting of several possibly interfering access points (APs) and clients 

operating on multiple frequencies

� Maximize aggregate throughput utility of clients with minimal exchange of state 

information among APs

� Optimization problem: 

max ∑ U(ri)

s.t. ri ≥ ri,min

Alcatel-Lucent – Internal
Proprietary – Use pursuant to Company instruction.11

i i,min

� ri = throughput of client i

� ri,min = minimum throughput requirement of client i

� U() = arbitrary (possibly non-concave) throughput utility function

� Resource allocation involves three interrelated decisions:

� Allocating power levels to various frequencies at each AP (Power 

allocation)

� Selecting AP to associate with for each client (Client association)

� Assigning time allotments to various clients at each AP (Scheduling)
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� Three sets of decision variables:

� Pjk : power level allocated by AP k to frequency j
� Qik : binary variable whether or not client i associates with AP k

� Tijk : time allotment assigned to client i on frequency j by AP k

� Optimization is mixed-integer possibly non-concave problem
� Solution algorithm consists of three components:

� APs update power allocations taking into account impact on 

Application Case 2: Solution Algorithm

Alcatel-Lucent – Internal
Proprietary – Use pursuant to Company instruction.

� APs update power allocations taking into account impact on 
neighboring APs due to interference

� Clients update association decisions taking into account impact on 
APs due to congestion

� APs maintain time fractions through scheduling in strictly local 
fashion

� Experimental results for up to 16 APs, 16 frequencies and 1024 clients 
show relatively swift convergence to stable operating point

12

Used with permission. The views expressed are those of the author and do not reflect the official policy or position of DARPA, the Department of Defense, or the U.S. Government.



Application Case 2: Experimental Results
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1024 mobiles

64 APs
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� Establish and maintain a dynamic backbone 

� In heterogeneous settings, utilizing higher-power nodes

� Each node is within a single hop of the backbone

Case 3: Application to Massive MANETs Using Dynamic Reconfigurable 

Backbone

Alcatel-Lucent – Internal
Proprietary – Use pursuant to Company instruction.

� Apply LCPS-based approaches discussed earlier for efficient transfer of 
traffic to/from nodes to the backbone

� Backbone nodes act as APs to other nodes in their neighborhood

� Efficient design of backbone

� Number of approaches in literature including geographic routing 

14
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� We know from mobile, email, and other communication that the total 
number of interactions between N nodes is typically not O(N2) but O(N) 

� Depending on geometry of MANET, the average number of end-to-end 
flows per link varies from O(1) to O(N) – square grid to tree topologies

� In case of O(1) each node needs to 
� Keep track of state for a small number of flows

� Forward packets/content to next hop according to geographic route

Case 4: Application to Massive MANETs with Assigned (Geographic) 

Routing

Alcatel-Lucent – Internal
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� Forward packets/content to next hop according to geographic route

� Rate control may be achieved in  multiple ways
� Associating a virtual node with every link and updating end-to-end rates 

according to a Gibbs-like scheme for general utility functions

� Using backpressure via queue length in forwarding packets for concave 
utility functions

� This is now similar to the previous cases where each node makes a 
randomized decision on power, channel and which packet to schedule 
according to Gibbs-like distribution

15
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�Linkage between LCPS with routing (backbone, 
geographic or other protocols) to determine 
convergence rate, which needs to be quantified

�Report on scalability of resulting LCPS-based MANET 
to 1000s of nodes via asymptotic and numerical 
analysis of joint LCPS and routing mechanism and 

Next Steps

Alcatel-Lucent – Internal
Proprietary – Use pursuant to Company instruction.

analysis of joint LCPS and routing mechanism and 
evaluate convergence rate

�Depending on outcome of above, collaborate on a 
protocol design that incorporates LCPS and routing and 
simulate on a high fidelity platform
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